Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3508, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346996

RESUMO

The management of mosquito resistance to chemical insecticides and the biting behaviour of some species are motivating the search for complementary and/or alternative control methods. The use of plants is increasingly considered as a sustainable biological solution for vector control. The aim of this study was to evaluate the biological effects of the essential oil (EO) of Lippia alba harvested in Abidjan (Côte d'Ivoire) against Anopheles gambiae and Aedes aegypti mosquitoes. Phytochemical compounds were identified by GC-MS. Knockdown and mortality were determined according to the WHO test tube protocol. Contact irritancy was assessed by observing the movement of mosquitoes from a treated WHO tube to a second untreated tube. Non-contact repellency was assessed using a standardised high-throughput screening system (HITSS). Blood meal inhibition was assessed using a membrane feeding assay treated with EO. The EO was identified as the citral chemotype. The EO gave 100% KD60 in both species at a concentration of 1%. Mortalities of 100% were recorded with An. gambiae and Ae. aegypti at concentrations of 1% and 5% respectively. The highest proportions of females escaping during the contact irritancy test were 100% for An. gambiae at 1% concentration and 94% for Ae. aegypti at 2.5% concentration. The 1% concentration produced the highest proportions of repelled mosquitoes in the non-contact repellency tests: 76.8% (An. gambiae) and 68.5% (Ae. aegypti). The blood meal inhibition rate at a dose of 10% was 98.4% in Ae. aegypti but only 15.5% in An. gambiae. The citral chemotype of L. alba EO has promising biological effects in both species that make it a potentially good candidate for its use in mosquito control. The results obtained in this study encourage the further evaluation of L. alba EOs from other localities and of different chemotypes, under laboratory and field conditions.


Assuntos
Monoterpenos Acíclicos , Aedes , Anopheles , Repelentes de Insetos , Inseticidas , Lippia , Óleos Voláteis , Animais , Feminino , Óleos Voláteis/farmacologia , Aedes/fisiologia , Mosquitos Vetores , Côte d'Ivoire , Inseticidas/farmacologia , Repelentes de Insetos/farmacologia , Controle de Mosquitos/métodos
2.
Mem. Inst. Oswaldo Cruz ; 115: e200313, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1154867

RESUMO

BACKGROUND Aedes aegypti is the sole vector of urban arboviruses in French Guiana. Overtime, the species has been responsible for the transmission of viruses during yellow fever, dengue, chikungunya and Zika outbreaks. Decades of vector control have produced resistant populations to deltamethrin, the sole molecule available to control adult mosquitoes in this French Territory. OBJECTIVES Our surveillance aimed to provide public health authorities with data on insecticide resistance in Ae. aegypti populations and other species of interest in French Guiana. Monitoring resistance to the insecticide used for vector control and to other molecule is a key component to develop an insecticide resistance management plan. METHODS In 2009, we started to monitor resistance phenotypes to deltamethrin and target-site mechanisms in Ae. aegypti populations across the territory using the WHO impregnated paper test and allelic discrimination assay. FINDINGS Eight years surveillance revealed well-installed resistance and the dramatic increase of alleles on the sodium voltage-gated gene, known to confer resistance to pyrethroids (PY). In addition, we observed that populations were resistant to malathion (organophosphorous, OP) and alpha-cypermethrin (PY). Some resistance was also detected to molecules from the carbamate family. Finally, those populations somehow recovered susceptibility against fenitrothion (OP). In addition, other species distributed in urban areas revealed to be also resistant to pyrethroids. CONCLUSION The resistance level can jeopardize the efficiency of chemical adult control in absence of other alternatives and conducts to strongly rely on larval control measures to reduce mosquito burden. Vector control strategies need to evolve to maintain or regain efficacy during epidemics.


Assuntos
Animais , Piretrinas/farmacologia , Resistência a Inseticidas/efeitos dos fármacos , Resistência a Inseticidas/genética , Aedes/efeitos dos fármacos , Mosquitos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Aedes/genética , Análise Espaço-Temporal , Mosquitos Vetores/virologia , Guiana Francesa , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/genética
3.
Parasit Vectors ; 9: 132, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26951758

RESUMO

BACKGROUND: In Cameroon, insecticide resistance in Anopheles (An.) gambiae s.l. has been reported in several foci, prompting further investigations on associated patterns of Long-Lasting Insecticidal Nets (LLINs) bio-efficacy. The current study, conducted from June to August 2011, explored the intensity of deltamethrin resistance in An. gambiae s.l. from Pitoa and its impact on the residual bio-efficacy of LifeNet, a LLIN with deltamethrin incorporated into polypropylene nets (PND). METHODS: Two-four days old females An. gambiae s.l. reared from larval collections in Pitoa were tested for susceptibility to DDT, permethrin and deltamethrin, using standard World Health Organization (WHO) tube assays. Intensity of deltamethrin resistance was explored using WHO tube assays, but across six working concentrations from 0.001 % to 0.5 %. Bio-efficacy of unwashed and washed PND was assessed using WHO cone test. Species identification and kdr 1014 genotyping were performed on mosquito samples that were not exposed to insecticides, using PCR-RFLP and HOLA methods respectively. The Kisumu reference susceptible strain of An. gambiae s.s. was used for comparisons. RESULTS: A total of 1895 An. gambiae s.l. specimens from Pitoa were used for resistance and PND bio-efficacy testing. This mosquito population was resistant to DDT, permethrin and deltamethrin, with 18-40 min knockdown times for 50 % of tested mosquitoes and 59-77 % mortality. Deltamethrin Resistance Ratio compared with the Kisumu strain was estimated at ≥500 fold. LifeNets were effective against the susceptible Kisumu (100 % knockdown (KD60min) and mortality) and the resistant Pitoa samples (95 % KD60min, 83-95 % mortality). However, the bio-efficacy gradually dropped against the Pitoa samples when nets were washed (X (2) = 35.887, df = 8, p < 0.001), and fell under the WHO efficacy threshold (80 % mortality and/or 95 % KD60min) between 10 and 15 washes. The Pitoa samples were composed of three sibling species: An. arabiensis (132/154, 86 %), An. coluzzii (19/154, 12 %) and An. gambiae s.s. (3/154, 2 %). The kdr L1014F allele was found only in An. coluzzii (Npositive = 13/19), at 34 % frequency and heterozygote stage. No specimen carried the kdr L1014S allele. CONCLUSIONS: The current study showed that LifeNet might still offer some protection against the resistant An. gambiae s.l. population from Pitoa, provided appropriate dose of insecticide is available on the nets.


Assuntos
Anopheles/efeitos dos fármacos , Resistência a Inseticidas , Mosquiteiros Tratados com Inseticida , Inseticidas/farmacologia , Nitrilas/farmacologia , Piretrinas/farmacologia , Animais , Anopheles/genética , Bioensaio , Camarões , DDT/farmacologia , Genótipo , Técnicas de Genotipagem , Permetrina/farmacologia , Análise de Sobrevida
4.
PLoS One ; 8(5): e63849, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23704944

RESUMO

The widespread insecticide resistance raises concerns for vector control implementation and sustainability particularly for the control of the main vector of human malaria, Anopheles gambiae sensu stricto. However, the extent to which insecticide resistance mechanisms interfere with the development of the malignant malaria parasite in its vector and their impact on overall malaria transmission remains unknown. We explore the impact of insecticide resistance on the outcome of Plasmodium falciparum infection in its natural vector using three An. gambiae strains sharing a common genetic background, one susceptible to insecticides and two resistant, one homozygous for the ace-1(R) mutation and one for the kdr mutation. Experimental infections of the three strains were conducted in parallel with field isolates of P. falciparum from Burkina Faso (West Africa) by direct membrane feeding assays. Both insecticide resistant mutations influence the outcome of malaria infection by increasing the prevalence of infection. In contrast, the kdr resistant allele is associated with reduced parasite burden in infected individuals at the oocyst stage, when compared to the susceptible strain, while the ace-1 (R) resistant allele showing no such association. Thus insecticide resistance, which is particularly problematic for malaria control efforts, impacts vector competence towards P. falciparum and probably parasite transmission through increased sporozoite prevalence in kdr resistant mosquitoes. These results are of great concern for the epidemiology of malaria considering the widespread pyrethroid resistance currently observed in Sub-Saharan Africa and the efforts deployed to control the disease.


Assuntos
Alelos , Anopheles/genética , Anopheles/parasitologia , Vetores de Doenças , Resistência a Inseticidas/genética , Plasmodium falciparum/isolamento & purificação , Animais , Anopheles/anatomia & histologia , Feminino , Humanos , Modelos Estatísticos , Oocistos/fisiologia , Prevalência , Esporozoítos/fisiologia , Asas de Animais/anatomia & histologia
5.
Malar J ; 8: 233, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19843332

RESUMO

BACKGROUND: Pyrethroid resistance is now widespread in Anopheles gambiae, the major vector for malaria in sub-Saharan Africa. This resistance may compromise malaria vector control strategies that are currently in use in endemic areas. In this context, a new tool for management of resistant mosquitoes based on the combination of a pyrethroid-treated bed net and carbamate-treated plastic sheeting was developed. METHODS: In the laboratory, the insecticidal activity and wash resistance of four carbamate-treated materials: a cotton/polyester blend, a polyvinyl chloride tarpaulin, a cotton/polyester blend covered on one side with polyurethane, and a mesh of polypropylene fibres was tested. These materials were treated with bendiocarb at 100 mg/m(2) and 200 mg/m(2) with and without a binding resin to find the best combination for field studies. Secondly, experimental hut trials were performed in southern Benin to test the efficacy of the combined use of a pyrethroid-treated bed net and the carbamate-treated material that was the most wash-resistant against wild populations of pyrethroid-resistant An. gambiae and Culex quinquefasciatus. RESULTS: Material made of polypropylene mesh (PPW) provided the best wash resistance (up to 10 washes), regardless of the insecticide dose, the type of washing, or the presence or absence of the binding resin. The experimental hut trial showed that the combination of carbamate-treated PPW and a pyrethroid-treated bed net was extremely effective in terms of mortality and inhibition of blood feeding of pyrethroid-resistant An. gambiae. This efficacy was found to be proportional to the total surface of the walls. This combination showed a moderate effect against wild populations of Cx. quinquefasciatus, which were strongly resistant to pyrethroid. CONCLUSION: These preliminary results should be confirmed, including evaluation of entomological, parasitological, and clinical parameters. Selective pressure on resistance mechanisms within the vector population, effects on other pest insects, and the acceptability of this management strategy in the community also need to be evaluated.


Assuntos
Anopheles/efeitos dos fármacos , Carbamatos/farmacologia , Culex/efeitos dos fármacos , Mosquiteiros Tratados com Inseticida , Inseticidas , Nitrilas/farmacologia , Piretrinas/farmacologia , Animais , Benin , Humanos , Mordeduras e Picadas de Insetos/prevenção & controle , Resistência a Inseticidas , Lavanderia , Controle de Mosquitos/métodos , Fenilcarbamatos , Plásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA